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ol (1) Equations of Motion

The equations of motion(l) of a spuce vehicle in Fig 1

are written with the square of the specific angular momentum

as the 1independent variable(e). These equations describe

the dynamical behavior of the rocket-powered vehicle in an

inverse square force field, i.e.,

a8 us®
a‘k“'g““ae ’ (l)
¢ 2%
and a—E(———-— - -
d2u 1 u® . du u3,2 S0 “r 5
et @y G v -— v —1-0  (2)
ak * 8 ku ku
(—) o
us
where u = 1/r = inverse of the radial distance measured
from the center of the moon (or planet)
to the space vehicle,
8 =

engular displacement of the vector r with respect
\ to the local vertical of the landing point,

2
= square of the specific anzular momentum = (r26) s

s & 4’0/4—

$

|

\= radial specific force,

|

%a transverse specific force,

= gravitational acceleration at a reference altitude
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above the moon (or planet),

uo = l/r0 = inverse of the radius at a reference altl-

tude above the moon (or planet).

(2) Variation Egquations

If the specific forces (ae and ar) are perturbed from
the programmed values, the outputs of the vehicle, u and e,
willl deviate from the programmed trajectory. In order to
confine this deviation within a specified permissible range,
proper guldance and control must be implemented. The per-
turbed forms of equations (1) and (2) are obtained by first

substituting u + Au, 6 + 46, a_ + da g, and a, + da, for u,

0
8, 8y and an, respectively. The difference between the

resulting egquations and the original equations 1s deter-

mined and higher order terms involving au, 48, Aa_  and aa,

6
are neglected, This procedure gives the following varia-

tlonal equations

dae 3 ud au _ ud (3)
dk a9 u ﬁae a 3
daa
2
47288 o, a(k) 98U 4 B(k)pu = C(k)aa, + D(K)az, + E(k) —2 ,

dk? dk dk

)

where




2 3 2 2, ?
2a6 ku “u ku Mae 2ae k
a
1 3c12 d%i(‘%) g a
C(k) = = [2 (32) + 5% B M (g - 2.4 E
p 4 K (ig 2ae2 ku? kuz)]’
u3
I
D(k) = - “2
Ltkae

(k) = - =-
o

su is the perturbed quantity in u,
26 1s the perturbed quantity in s,
aa_ 1s the perturbed quantity in ae,

0
and aa., is the perturbed quantity in a

r
These variational equations with k as an independent varia-
ble are ordinary linear differential equations with variable
coefficients., The deviation ae and au at the landing point

can be determined or computed from these equations.

(3) Computer Scheme

In general, the criteria for choosing a particular
computer scheme are:

1 The quantities a_, and a, must be finite during the

o
entire descent trajectory.
i1 The sources of information of the variables u and k
are important. Subscripts m or k may be added to indicate
that these variables are computed from measurements or other

variables,
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111 The nonlinear feedback should stablilize the system
and feorce the vehicle into the reference trajectory.
In Fig. 2 and 3 the quantities Uy, and km are the meas-
ured inverse radius and specific momentum of the vehicle,
respectively. The computed inverse radius uy is determined

by a particular program in terms of km'
(k) The Angular Error 46

Assuming no propulsion errors (dae+0, sar+0) and meas-

urement (or guidance) errors (su+0, §k+0), then

as = a . and u, = u, (5a)
or
pa, = pa,  and sug = Au. (5b)
The variational equations for ay and %% can be written as

sa 2

X9 gc
Aa, = Aa__ = Au_ = Au, (6)
6 6c aum m Bum
- 2 3a
and & (ae) = 348 (3 - & 2G, (7)
6 6 m

If nonlinear guidance is employed in determining the trajec-
tories, the computer 1s supposed to calculate the reference
specific force according to a particular program, consistent

with the criteria given previously in this section, hence

Uy a
a = (
%6c = 725 » (62)
where g is a constant,
3
= = -'-‘-‘—1-‘
If sa, = &u 0, then 2, = 35 . (8b)

By taking the partial derivative of equation (8a) one
obtains




2
24 3u

6C m
= . (9)
m 28

au
If equations (8a) and (9) are substituted into equa-
tion (7) we have
d -
ax (se) = 0. (10a)

If the initial perturbed quantity is A8y s then for the
entire landing operation

DO T ADy T constant, (10b)

(5) The Radial Error Au

The choice of the tangential specific force aec in
equation (8a) 1s very important not only for the simplifica-~
tion of the computation of the angular error but also for
the determination of the radial error. Eguations (5), (6)

and (9) show that

u2
pa, = 38 AU, (11)
from which one obtains
4 _ 3u (du . d -
e (Aae) = 55 [EEQ(Au) *tu g (au)J. (12)

The differential equatlion for the radial error au can
be greatly simplified by substituting equations (8b), (11)

and (12) into equation {4). The result is,

2a
a2 1 d 271 - ¢ = . B2
T (au) + 5% % (au) + g4[1 ku3J(AU) e 63y (13)

The computer program for the radial specific force (arc)

has the functional form
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8o = KUps W, ko), (14)
where the subscripts m and k are assigned to u to designate
the signal sources. The feedback, which is shown in Figs., 2
and 3, must be properly designed to ensure system stability.

The variational form of equation (14) is

LE:] da du 2a
re re k rc
rc aum m auk, dkm m akm m

As indicated 1n equation (15) the perturbed quantity, Aarc

results from the perturbations Aum and Akm. If the k meas-
urement error 1s zero, then
k = k. (16)
Since k is an independent variable in the analysis, it
follows that
8k = bk = O, (17)
Hence equation (15) can be reduced to the following:

Ja

rc
A2, = 3, BU . (18)

Equation (13) shows that the perturbed quantity Au is
influenced by the forcing function which is generated by
the perturbed radial specific force Aar. If it is further

assumed that there is no propulsion error in 2. then
8ne = Bps (19a)

which implies aa,, = ba,. (19b)
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With equations (5b), (18), (19a) and (19b), equation (13)

reduces to the homogeneous differentlal equation,

2a ’a
2
dfau . 1 dau | 82[1 - rc3 + 1 5 TCY Au = O, (20)
dk? ¢k d KmUp Kpup® duy

The radial specific force a, is chosen to be

g, u 2
= - om - 3 2 2 -
aI‘ aI‘c u 2 kmum + A kbum (uk uo)’ (21)
o

in accordance with the criteria given previously in this
section. Differentiating equation (21) with respect to U,
one obtains the value of Aa, in equatlon (18). Substitu-
ting thls value and equation (21) into equation (20) yields
d?au 1 dau
oGt ae = O (22)

The solution of equation (22) is
1
du = clkz + ¢y, (23)

where ¢, and ¢, are constants of integration.



(6) Terminal Altitude Error Ar

By employing the proposed feedback program forzarc and
aggs the effects due to the different initial errors on

the terminal altitude error can be determined. The first
case begins wlth the assumption that the vehicle is in a
circular orbit with an initial radial error of Aub before
it starts to descend. The errors in the initial conditions

are expressed as

Au = Au (24)
k=k b
b
!
dbu |
~ k=kb
With equations (24) and (25), equation (23) ylelds
cy =0 and Cp = Aub
Thus the solution becomes
Au = bduy (26)
With the aid of the definition u = %, it leads to
1
Au = - 2 Ar (27)
P2
LEfter substituting equation (27) into equation (26), the
altitude error is o
r
or « (&) o, (28)

where Arb is the initial altitude error.
The circular parking orbit of 22.04-mile altitude

corresponds to r, = 1102.04 miles, while the radius of the
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lunar surface is r = 1080 miles. 1If Ary = 0.1 mile, then

the terminal altitude error = 0.096 mile.

Ar ik:O

For trajectories other than c¢ircular orbit one may
start with a correct altitude (i.e., Ou = O) but with an
angular deviation other than the programmed slope. Then

the initial errors resulting from the deviations are

Au ; = 0 (29)
k=kb
f
k=kb

Using equations (29) and (30), the constants of integration

in equation (23) can be determined. Thus, the solution for
1

equation (23) 1is 7
Au = 2W (k k) - 2 Wk (31)

which 1s valid for the entire landing operation. The
particular value of k is zero at landing, thus

Au = -2 W k (32)
k=0 b

To interpret the quantity wb in equation (30) it is
desirable to evaluate the derivative of Au with respect to

k in equation (27).

dhdu 2 dr 1 dar dé
Since Ar i = Au = 0 by equation (29), therefore,
' k:kb H k=kb
Y. 1 dAr a6
iy = - 155 T (34)
b k=k

b
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From equations (1) =nd (8.), we have

L -8 (35)

The value of 2 can be determinec¢ frowm the trzjectory for

n=0, (see ’‘ppendix :) as

B:% (36)

6

P W - .. L %, ar

b T 2 E;'—Eg T a2 —E;_ ds
b

1k=kb k=k

k=ky,

H

(37)

The terminal altitude error Ar is determined from equations

(27), (32) end (37) =zs

r 2 3
o gr
k=0 kskb
where ds = r ¢f and A(%g) j is an angular deviation
k=kb

from the programmed path.
Piz. 4 shows the relationship betwsen the terminagl altitude
error and the landing angle Gb for tne cifferent angular

deviations at initial point.
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(7) Error of the Terminal Transverse Velocity

Based on the definition of k, the error of the transverse

velocity can be determined. Since

4e .2
2 =7)

k= (22 8% o (zv,) (39)

the transverse velccity of the vehicle (ve =TI g%) can
also be written as 1

Vg = - K2 u (40)
With k taken as the reference variable in the feedback
control, the perturbed Vg and the perturbed u have the
following relation

1
Avg = - K Bu (41)

ana

it
o

Aveg

k=0

(42)

(8) Error of the Terminal R.dicl Velocity

It is of great importance to investigate the error of the
terminal radial velocity because of the stringent conditlon

imposed on the terminal touch-down velocity in achieving
dr

soft landing. It is defined thav V. = 3%
Hence v = . Su 1 46 du
’ r w2dt 2 dt de
1
- - 5 (43)

The effect on Avr due to the values Au and A8 is deter-

mined as



-12-

l
A"r - - [d(u+Au)(d9dk ) du ( ) ] (1434)
Thus 1
AVI. 2- dAU( )- (45)

where é%% = 0 as sihown in equation (10a). The trajectory
of the vehicle has a simple analytical expression when the

value n equals zero, which implies (see Zppendix A7)

a _ o %
aE = - Eg
Thus K 1l
b, = - @.:. Lu 2 (46)

To evaluate the error of the radial velocity Avr, it is
required to czlculcte the value %%5, which 18 obtained

from equation (23)

1
du Lok 2 (47)
Equation (46) is reducec further as
Kk
AV, %G.Ecl (48)

which shows that the value of Avr remzins constant through-
out the entire landing operction.
It is to be noted that from equation (47) ¢y = O if

the initial conditions aore

dAu = O
aK

k=k

- ;
anc Au;
|
1

 k=k

= Aub

b b

Therefore Avr = O for the above case. However, for the
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case where Q%%_i = Ub and AJ = 0, we have
| ey lk"kb
1
cy = 2wb1cb§ (49)
which is obtained by comparing equations (23) and (31).
Substituting the value of W, [rom equation (37) into

equation (49), one obtains -

-2
6, k
b™d dry |
cy = - 2 2 b A(ag)l (50)
b k=l
i K =1y
From equation (50) and equation (48), we have
1
K 2 ! }
b ary ar,! ,
v, = ;g-'A(ag)' = Vo2 (g3) (51)
szb | k=kb

where Veb is the velocity of the vehicle in the c¢ircular
orbit. PFig. 5 shows the linear relationship between the
error of the radial velocity (Avr) and the angular devia-
tion [a(%g)] of the initizl trojectory with respect to the
circulor orbit, For example, an angular deviation of 3

minutes will give an error of radial velocity of

3.25 mile/hr.
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CONCLUSIONS

(2) The objective of this paper is to find feasible con-
trol schemes for descent trojectories that will give, with
high accuracy, the finzl position and velocity for lunar
landing. A stable control system can be provided for any
initial error. .lth the aid of a feedback system ob-
tained from measurements of the state of the vehicle very
small devistions from the programmed course are exXpected

so that a bull‘s eye landing can be acnileved.

(b) The veriavional equations (3) and (4) are completely
generzl in sccpe for any two-daimensional problem provided

the vehicle is not coasting, l1.e., k = constant.

(c) By choosing the computer scheme and the non-linear
guidance for specific forces ay and a5 the anguiar and
radial errors are conatants and the veloclty errors are
zero if the systenn steris woon tiie specific perturbed

initial conditions.

(d) The soliution for the raference trajectory is in
algebraic closed form, which simplifies the computa-

tional aspect of the control, either hv munual copera-

ZCZ{ )

tion or auvtowmatic.




FUTURE STUDY

(1) oOther forms of perturbution.

A fecedback systems for derping the initlal angular
and radial error will be investigated, for example, per-
turbed velocity feedback. is the dynamic process is a
multiple variable system with coupling effects between ’
the angular and radial components, the characteristics
c¢f the output must be clearly understood.

(2) The stability of the fecdback system will be studiled.
Since the equations of the dynamic system are in terms of
the independent variable k instead of time, the stability
criterion must be redefined since k decreases monctonically
with increasing time.

(3) If an earth bound signal is used, the computers for
850 and a,. can meke calculations on carth and send a com-
mand signal to the lunar bug. 4 delay(ty + Tz + Ta) of at
least 3 seconds is shown in Fig. 3. The effect ¢f this "“pure
delay” will be studied.

(4) Statistical error in measurements and guidance appear
as %k and Su and in the propulsion system as 639 and Sar

in Fig. 3. The control of this nonlinear stoicastic pro-

e (] P ~
cess wiil be analyzed.
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LPPENDIX &

The solutionc to Equations (1) and (2) in the text
can be obtained provided that the specific forces are
given. The {transverse and radizal specific forces must
be chosen sc that the soft landing requirements are satis-

fied. It is purpcsed that

6 1,k P
@_j; 5‘(&;) s O-n-.1, (a1)
a g kaq
r 0 2 b . .1
= - A 2 (u-u ) .
() e =2 -uen 2oy, ald (42)
0

where kb is the initlal wvalue of k.

The constants parameters A and B are tc be determined.

The justification for the limits on the parameters on n and

q 1s that, 2s k apprcaches zZero, the value of ag ané a

r
must be finite. This results in O < n and ¢ i_%- Under

the initial conditions (€ = 6, at k = K, ) and the final
conditions (& = 0 at k = 0), the following expressions are

obtained by sclving equations (1) and (4l)

1
8 -n k
= (;— A3
G - (s (53)
and | (1-n)e
B = '—'T(—-—-—b (Au)

b



The solution to equation (2) after substituting (A1)
and (A2) into it with q = % and n = O is
1
: 0 \Z
sin 2A9b(yg)
(a5)

A

sin ZAG

b

where U = uo - U,
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